Structure-Activity Relationships of the Melanocortin Tetrapeptide Ac-His-DPhe-Arg-Trp-NH 2 at the Mouse Melanocortin Receptors. 1. Modifications at the His Position

J erry Ryan Holder, Rayna M. Bauzo, Zhimin Xiang, and Carrie Haskell-Luevano*
Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610

Recei ved October 22, 2001

Abstract

The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as α-melanocyte stimulation hormone ($\alpha-\mathrm{MSH}$). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPheresults in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp- NH_{2}, consisting of 17 members that have been modified at the His ${ }^{6}$ position ($\alpha-\mathrm{MSH}$ numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further experimental evidence that the His ${ }^{6}$ position can determine MC4R versus MC3R agonist selectivity and that chemically nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-molecule, non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC50 $=$ 21 nM), was a weak mMC3R micromolar antagonist ($\mathrm{pA}_{2}=5.6, \mathrm{~K}_{\mathrm{i}}=2.5 \mu \mathrm{M}$), and possessed >4700-fold agonist selectivity for the MC4R versus the MC3R. Substitution of the His ${ }^{6}$ amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His^{6}-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective nonpeptide molecules.

Introduction

The mel anocortin receptors bel ong to the superfamily of seven transmembrane-spanning G-protein-coupled receptors (GPCRs) and stimulate the cAMP signal transduction pathway. ${ }^{1}$ The endogenous agonist ligands for these melanocortin receptors are derived from posttranslational processing of the pro-opiomelanocortin (POMC) gene transcript, which upon differential processing results in the generation of the $\alpha-, \beta$-, and γ-melanocyte stimulating hormones (MSH) and adrenocorticotropin (ACTH). All these melanocortin peptide agonists contain a core His-Phe-Arg-Trp tetrapeptide sequence that has been attributed to the ligand selectivity and stimulation of the melanocortin receptors. ${ }^{2-4}$ The melanocortin receptor family also has two endogenous antagonists, agouti ${ }^{5}$ and the agouti-related protein (AGRP), ${ }^{6,7}$ which are the only known naturally occurring antagonists of GPCRs discovered to date. The centrally located melanocortin-3 and -4 receptors (MC3R, MC4R) have been identified in knockout mice to be involved in feeding behavior, obesity, metabolism, and energy homeostasis. ${ }^{8-10}$ The most well-studied melanocortin receptor ligands are for the skin melanocortin-1 receptor (MC1R), which are involved in pigmentation

[^0]and animal coat coloration. ${ }^{11-13}$ Additionally, the mel-anocortin-5 receptor has been deleted from the mouse genome and identified as playing a role in exocrine gland function. ${ }^{14}$

The role of the His amino acid at the 6 position of $\alpha-\mathrm{MSH}$ has not been previously explored in extensive detail throughout the literature, although an invention discl osure has been issued detailing modifi cations at the His position. ${ }^{15}$ A peptide modified at the His position of the SHU 9119 template (Ac-Nle-c[Asp-His-DNal(2')-Arg-Trp-Lys]- NH_{2}) ${ }^{16}$ with (1-Me)H is resulted in conversion of the SHU $9119 \mathrm{mMC5R}$ agonist into an antagonist. ${ }^{17}$ Modification of the His^{6} by Pro in the MTII peptide template (Ac-NIe-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2) ${ }^{18,19}$ resulted in the identification of modifications that might lead to increased MC4R selectivity versus the MC3R. 20-22 M ore recently, modification of the MTII Iactam cyclization ring size of peptides containing the His-DPhe-ArgTrp sequence resulted in the identification of 50 -fold ${ }^{23}$ and 90 -fold ${ }^{24}$ MC4 versus MC3 receptor selectivity. Incorporation of the unusual amino acid Atc in its racemic form (Figure 1) at the 6 position in the peptide c[Asp-(racemic)Atc-DPhe-Arg-Trp-Lys]-NH2 resulted in a peptide possessing 65 nM agonist activity at the human MC4R while possessing only slight agonist activity at the hMC3R, resulting in the most MC4R versus MC3R selective compound disclosed to date. ${ }^{25}$

$\mathrm{NaI}\left(2^{\prime}\right)$

2Thi
3 Bal

Pro

Tic

Atc

Figure 1. Structures of the amino acids used to replace H is in the peptide template Ac-Xaa-DPhe-Arg-Trp-NH2.

This latter report also made several other amino acid substitutions and Atc derivatives at the His position, resulting in interesting pharmacological properties at the melanocortin receptors. ${ }^{25}$ Substitution of the His amino acid by Pro, DPro, Glu, Gly, and Ala in various cyclic peptide templates has been reported by different research laboratories, generally resulting in decreased peptide potency for the melanocortin receptors. ${ }^{20-22,24,26,27}$ Interestingly, upon del etion of the His amino acid in the Ac-His-DPhe-Arg-Trp-NH2 tetrapeptide, at the human MC4R only 2 -fold decreased potency was observed ${ }^{28}$ while at the mouse MC4R 220fold decreased potency was observed, ${ }^{29}$ with a loss of full agonist activity at the mMC3R and 170- and 480fold decreased potency at the mMC1R and mMC5R, respectively. ${ }^{29}$ These latter results demonstrate that the 6 position of the melanocortin peptides ($\alpha-\mathrm{MSH}$ numbering) may be important for receptor selectivity and potency in the Ac-His-DPhe-Arg-Trp-NH 2 tetrapeptide template. This study was undertaken to examine the role of various aromatic, natural, and unnatural amino acids in the His position of the tetrapeptide Ac-His-DPhe-Arg-Trp- NH_{2} for structure-activity-relationships and selectivity properties at the mouse melanocortin receptors.

Results

Chemical Synthesis and Characterization. The peptides reported herein were synthesized using standard fluorenylmethyloxycarbonyl (F moc) ${ }^{29,30}$ chemistry and a parallel synthesis strategy on an automated synthesizer (Advanced ChemTech 440MOS, Louisville, KY). The peptides were purified to homogeneity using semipreparative reversed-phase high-pressure liquid chromatography (RP-HPLC). The purities of these peptides were assessed by mass spectrometry (Table 2), analytical RP-HPLC in two diverse solvent systems (Table 2), and one-dimensional ${ }^{1} \mathrm{H}$ NMR (NMR data in Supporting Information). Previously, we have synthesized and reported ${ }^{29}$ the Ac-His-DPhe-Arg-Trp-NH2 (included herein), Ac-His-Phe-Arg-Trp-NH2, Ac-His-Phe-Arg-DTrp-NH2, and Ac-His-DPhe-Arg-DTrp-NH2 diastereomeric peptides as having distinct analytical RPHPLC k^{\prime} values in two diverse solvent systems.

Biological Evaluation. Table 1 summarizes the His6-substituted tetrapeptide agonist pharmacol ogy at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R.
Mouse Melanocortin-1 Receptor. The peripheral skin melanocortin receptor, MC1R, is involved in human skin pigmentation ${ }^{12,31}$ and animal coat coloration. ${ }^{13}$ The lead tetrapeptide 1, Ac-His-DPhe-Arg-Trp-NH2, has been previously reported to possess 25 nM stimulatory activity at the mMC1R, ${ }^{29}$ an EC_{50} value of 200 nM in the classical Rana pipiens frog skin assay (putative MC1R), ${ }^{4}$ and possesses an mMC1R EC 50 of 20 nM reported herein. Substitution at the His ${ }^{6}$ position within this tetrapeptide by Pro, Phe, DPhe, Trp, DTrp, Nal(2'), DNal(2'), Tic, DTic, 3PAL, 4PAL, 2Thi, 3Bal, Anc, Atc, and DHis (Figure 1) all resulted in 9- to 570 -fold decreased agonist activity at the mMC1R. Removal of the imidazole His side chain and replacement by the methyl side chain of Ala (2) resulted in 90-fold decreased potency. The Pro ${ }^{6}$-containing tetrapeptide $\mathbf{3}$ resulted in 211-fol d decreased potency, while the Phe 6 - and DPhe ${ }^{6}$ containing tetrapeptides (4 and 5, respectively) possessed 25 - and 570 -fold decreased potencies, respectively, compared with the His ${ }^{6}$ peptide 1. Substitution of the imidazole His^{6} side chain with the Trp^{6} indole in either the L or D stereochemi cal configurations resulted in 269- and 328 -fold decreased potencies of peptides 6 and $\mathbf{7}$, respectively. In tetrapeptides $\mathbf{8}$ and $\mathbf{9}$, containing $\mathrm{NaI}\left(2^{\prime}\right)^{6}$ and $\mathrm{DNal}\left(2^{\prime}\right)^{6}, 473$ - and 353 -fold decreased potencies were observed at the mMC1R, respectively, compared with peptide $\mathbf{1}$. Replacement of the imidazole side chain at the 6 position with the topographically constrained χ side chain derivatives of the Phe amino acid, Tic and DTic (10 and 11), resulted in 129- and 562fold decreased potencies at the mMC1R, respectively. Substitution at the 6 position with phenyl derivatives containing nitrogen at either the 3 or 4 positions of the phenyl ring, 3PAL peptide 12 and 4PAL peptide 13, resulted in 57- and 9 -fold decreased potencies at the mMC1R compared with the His6-containing peptide 1. Interestingly, for substitution of the imidazole ring with the sulfur-containing 2Thi (Figure 1) peptide 14, a 10fold decreased potency was observed at the mMC1R. Incorporation of an additional benzyl ring (3Bal, 15) onto the peptide 14 position 6 side chain resulted in 219fold decreased potency compared with the imidazole eside chain (1) and in a 22 -fold decreased potency compared to peptide 14, at the mMC1R. The Anc- and racemic Atccontaining peptides 16 and 17, respectively, are equipotent to each other and resulted in 393- and 384-fold decreased potency compared with peptide $\mathbf{1}$ at the mMC1R. Stereochemical inversion of His^{6} to DHis^{6} (18) resulted in 14-fold decreased potency at the mMC1R.
Mouse Melanocortin-3 Receptor. The MC3R is expressed both peripherally and centrally and appears to be involved in metabolism and energy homeostasis. $8,9,32,33$ The lead tetrapeptide 1, Ac-His-DPhe-Arg-Trp- NH_{2}, has been previously reported to possess a 195 nM agonist EC_{50} at the $\mathrm{mMC3R} \mathrm{R}^{29}$ and a 1000 nM EC 50 at the hMC3R ${ }^{34}$ and to possess a 156 nM EC 50 herein. Substitution at the His^{6} position within this tetrapeptide by Pro, Phe, DPhe, $\operatorname{Trp}, \operatorname{DTrp}, \operatorname{Nal}\left(2^{\prime}\right)$, $\operatorname{DNal}\left(2^{\prime}\right)$, Tic, DTic, 3PAL, 4PAL, 2Thi, 3Bal, Anc, Atc, and DH is (Figure 1) all resulted in 15 - to 127 -fold decreased
Table 1. Functional Activity of the His^{6}-Modified Tetrapeptides at the Mouse Melanocortin Receptors ${ }^{\text {a }}$

peptide	structure	mMC1R		mMC3R		mMC4R		mMC5R	
		$\mathrm{EC}_{50}(\mathrm{nM})$	fold difference	$E C_{50}(\mathrm{nM})$	fold difference	$E C_{50}(\mathrm{nM})$	fold difference	$E C_{50}(\mathrm{nM})$	fold difference
$\alpha-\mathrm{MSH}$	Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2	0.55 ± 0.09		0.79 ± 0.14		5.37 ± 0.62		0.44 ± 0.09	
NDP-MSH	Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2	0.038 ± 0.012		0.098 ± 0.013		0.21 ± 0.03		0.071 ± 0.012	
MTII	Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2	0.020 ± 0.003		0.16 ± 0.03		0.087 ± 0.008		0.16 ± 0.03	
1	Ac-His-DPhe-Arg-Trp- NH_{2}	20.1 ± 0.57	1.0	156 ± 9.2	1.0	17.2 ± 2.80	1.0	3.96 ± 0.94	1.0
2	Ac-Ala-DPhe-Arg-Trp- NH_{2}	1,800 ± 370	90	9000 ± 2500	58	1000 ± 280	58	300 ± 7	76
3	Ac-Pro-DPhe-Arg-Trp- NH_{2}	$4,250 \pm 1400$	211	15000 ± 1600	96	1500 ± 660	87	684 ± 142	173
4	Ac-Phe-DPhe-Arg-Trp-NH2	503 ± 100	25	11900 ± 1800	76	70.6 ± 13.8	4	143 ± 5	36
5	Ac-DPhe-DPhe-Arg-Trp- NH_{2}	11500 ± 1800	570	> 100000		2170 ± 390	126	2980 ± 1800	753
6	Ac-Trp-DPhe-Arg-Trp-NH2	5400 ± 1800	269	10300 ± 1500	66	528 ± 150	31	507 ± 96	128
7	Ac-DTrp-DPhe-Arg-Trp- NH_{2}	6600 ± 1200	328	> 100000		6200 ± 200	260	1260 ± 300	319
8	Ac-Nal(2)-DPhe-Arg-Trp-NH2	9500 ± 5100	473	14700 ± 2000	94	2900 ± 2400	169	606 ± 360	153
9	Ac-DNal(2')-DPhe-Arg-Trp-NH2	7100 ± 980	353	> 100000		1500 ± 300	87	2240 ± 900	566
10	Ac-Tic-DPhe-Arg-Trp- NH_{2}	2600 ± 600	129	11800 ± 1600	76	2900 ± 1600	169	369 ± 140	93
11	Ac-DTic-DPhe-Arg-Trp- NH_{2}	11300 ± 3100	562	> 100000		11700 ± 420	680	12000 ± 500	3030
12	Ac-3PAL-DPhe-Arg-Trp- NH_{2}	1150 ± 240	57	slight agonist		887 ± 99	52	400 ± 147	101
13	Ac-4PAL-DPhe-Arg-Trp- NH_{2}	176 ± 80	9	2270 ± 770	15	128 ± 33	7	92.5 ± 22.3	23
14	Ac-2Thi-DPhe-Arg-Trp-NH2	203 ± 40	10	2950 ± 250	19	91.2 ± 39	5	40.5 ± 13	10
15	Ac-3Bal-DPhe-Arg-Trp-NH2	4400 ± 3000	219	19800 ± 3200	127	211 ± 62	12	381 ± 123	96
16	Ac-Anc-DPhe-Arg-Trp-NH2	7900 ± 4200	393	slight agonist $\mathrm{pA}_{2}=5.60 \pm 0.11$	antagonist $\left(\mathrm{K}_{\mathrm{i}}=2500 \mathrm{nM}\right)$	21.1 ± 6.0	1	45.6 ± 6.9	12
17	Ac-rac(Atc)-DPhe-Arg-Trp-NH2	7730 ± 1200	384	slight agonist		714 ± 150	42	2400 ± 1030	606
18	Ac-DHis-DPhe-Arg-Trp- NH_{2}	289 ± 107	14	6190 ± 2460	40	506 ± 58	29	138 ± 24	35

[^1]Table 2. Analytical Data for the Peptides Synthesized in this Studya

peptide	structure	HPLC ${ }^{\prime}$ (system 1)	HPLC ${ }^{\prime}$ (system 2)	$\begin{gathered} m / z \\ (M+1, \text { calcd }) \end{gathered}$	$\begin{gathered} m / z \\ (M+1, \text { exptl }) \end{gathered}$	purity, \%
1	Ac-His-DPhe-Arg-Trp-NH2	3.9	6.9	686.8	686.3	> 98
2	Ac-Ala-DPhe-Arg-Trp- NH_{2}	4.9	8.2	620.7	620.3	>97
3	Ac-Pro-DPhe-Arg-Trp- NH_{2}	8.1	9.0	646.8	646.1	> 99
4	Ac-Phe-DPhe-Arg-Trp- NH_{2}	6.8	10.6	696.8	696.3	> 99
5	Ac-DPhe-DPhe-Arg-Trp- NH_{2}	6.5	9.9	696.8	696.4	> 99
6	Ac-Trp-DPhe-Arg-Trp- NH_{2}	6.7	10.5	735.9	735.9	> 99
7	Ac-DTrp-DPhe-Arg-Trp-NH2	6.5	10.0	735.9	735.1	> 99
8	Ac-Nal(2)-DPhe-Arg-Trp-NH2	7.7	12.0	746.9	746.2	> 99
9	Ac-DNal(2')-DPhe-Arg-Trp-NH2	7.5	11.4	746.9	746.1	> 97
10	Ac-Tic-DPhe-Arg-Trp- NH_{2}	6.9	10.3	708.8	708.2	> 99
11	Ac-DTic-DPhe-Arg-Trp-NH2	6.9	10.3	708.8	708.3	> 99
12	Ac-3PAL-DPhe-Arg-Trp- NH_{2}	4.0	6.7	697.8	697.3	> 99
13	Ac-4PAL-DPhe-Arg-Trp- NH_{2}	3.9	6.6	697.8	697.3	> 99
14	Ac-2Thi-DPhe-Arg-Trp- NH_{2}	6.4	10.4	702.8	702.3	> 99
15	Ac-3Bal-DPhe-Arg-Trp- NH_{2}	5.3	12.1	752.9	752.1	> 99
16	Ac-Anc-DPhe-Arg-Trp-NH2	7.3	11.1	717.8	717.7	> 99
17	Ac-Atc-DPhe-Arg-Trp-NH2	7.2, 7.3	11.2, 11.4	721.9	722.2	> 99
18	Ac-DHis-DPhe-Arg-Trp-NH2	4.1	6.7	685.8	686.0	> 99

${ }^{\text {a }} \mathrm{HPLC}$ k $=[($ peptide retention time - solvent retention time)/(solvent retention time)] in solvent system 1 (10\% acetonitrile in 0.1% trifluoroacetic acid/water and a gradient to 90% acetonitrile over 35 min) or solvent system 2 (10% methanol in 0.1% trifluoroacetic acid/water and a gradient to 90% methanol over 35 min). An analytical Vydac C18 column (Vydac 218TP104) was used with a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$. The peptide purity was determined by HPLC at a wavelength of $214 \AA$.

Figure 2. Illustration of the tetrapeptides possessing slight agonist activity (Table 1) at the mMC3R. The amino acid in the Xaa position is listed, and the number in parentheses represents the compound number. The peptides $\alpha-\mathrm{MSH}$ and $\mathbf{1}$ are included as controls to illustrate the maximal response observed for full agonists using this assay.

Figure 3. Illustration of weak antagonism of the tetrapeptide 16, Ac-Anc-DPhe-Arg-Trp-NH2, at the mouse MC3R.
potency, slight agonism at $100 \mu \mathrm{M}$ (but not enough to determine an EC50 value; Figure 2), a complete loss of agonist activity (up to $100 \mu \mathrm{M}$), or for a single peptide (16), a weak micromolar antagonist (Figure 3) at the mMC3R. The peptides that did not demonstrate agonist activities were tested for antagonism at up to $10 \mu \mathrm{M}$ and did not result in any observable antagonistic properties (data not shown). Peptides 2 and 3, contain-
ing Ala ${ }^{6}$ and Pro^{6}, resulted in 58- and 96 -fold decreased mMC3R potency, respectively, compared with the His ${ }^{6}$ lead peptide 1. Phenyl side chain substitution of the imidazole at the 6 position with Phe and DPhecontaining peptides 4 and 5 resulted in 76 -fold decreased potency and a loss of stimulatory activity at up to $100 \mu \mathrm{M}$, respectively, at the mMC3R. Substitution of the His^{6} imidazole side chain with the Trp indole in either the L or D stereochemical configuration resulted in 66-fold decreased potency for the Trp^{6}-containing peptide 6 and loss of stimulatory activity at up to 100 $\mu \mathrm{M}$ for the DTrp ${ }^{6}$-containing tetrapeptide 7 at the mMC3R. Tetrapeptide 8, containing $\mathrm{Nal}\left(2^{\prime}\right)^{6}$, resulted in 94 -fold decreased potency compared with the His ${ }^{6}$ peptide 1, while the $\operatorname{DNaI}\left(2^{\prime}\right)^{6}$ tetrapeptide 9 resulted in a loss of stimulatory activity at up to $100 \mu \mathrm{M}$ at the mMC3R. Replacement of the imidazole side chain at the 6 position with Tic ${ }^{6}$ (10) resulted in 76-fold decreased potency compared with $\mathbf{1}$, while the DTic ${ }^{6}$-containing tetrapeptide 11 resulted in loss of stimulatory activity at up to $100 \mu \mathrm{M}$ at the mMC3R. At the mMC3R substitution at the 6 position with phenyl derivatives containing nitrogen at either the 3 or 4 position of the phenyl ring, 3PAL peptide $\mathbf{1 2}$ possessed agonist activity (at $100 \mu \mathrm{M}$, Figure 2) but not enough for determining an EC_{50} value, whereas 4PAL peptide $\mathbf{1 3}$ resulted in only 15 -fold decreased potency compared with peptide 1. Tetrapeptide 14, containing 2Thi at the 6 position, resulted in 19-fold decreased mMC3R potency, whereas the 3Bal ${ }^{6}$-containing tetrapeptide 15 resulted in 127fold decreased potency at the mMC3R compared with the His^{6} peptide 1. The Anc ${ }^{6}$-containing tetrapeptide 16 possessed only slight agonist activity, and when tested for antagonism, it resulted in a weak micromolar antagonist with a pA_{2} of $5.6\left(\mathrm{~K}_{\mathrm{i}}=2.5 \mu \mathrm{M}=-\log \mathrm{pA}_{2}\right)$ (Figure 3). Interestingly, peptides 16 and 17 possessed only slight agonist activity at the mMC3R at up to 100 $\mu \mathrm{M}$ (Figure 2). Finally, inversion of chirality from His ${ }^{6}$ to DHis ${ }^{6}$, peptide 18, resulted in 40-fold decreased potency at the mMC3R.

Mouse Melanocortin-4 Receptor. The central MC4R has been identified as physiologically participating in
food consumption ${ }^{35}$ and obesity in mice ${ }^{10}$ with several polymorphisms of the MC4R observed in obese humans. ${ }^{36-41}$ The lead tetrapeptide in this study, Ac-His-DPhe-Arg-Trp-NH2 (1), was previously reported to possess a 10 nM agonist $E C_{50}$ value at the $\mathrm{mMC} 4 \mathrm{R}^{29}$ and 8^{28} and $47^{34} \mathrm{nM}$ agonist EC_{50} values at the hMC4R, with a potency at the mMC4R of 17 nM reported herein. Substitution at the His^{6} position within this tetrapeptide by Pro, Phe, DPhe, Trp, DTrp, Nal(2'), DNal(2'), Tic, DTic, 3PAL, 4PAL, 2Thi, 3Bal, Anc, Atc, and DHis (Figure 1) resulted in 4- to 680-fold decreased potency at the mMC4R. Tetrapeptides 2 (Ala^{6}) and 3 (Pro ${ }^{6}$) resulted in 58- and 87-fold decreased potencies, respectively, compared to the His ${ }^{6}$-containing tetrapeptide $\mathbf{1}$ at the mMC4R. Substitution of the His^{6} imidazole with either Phe (4) or DPhe (5) resulted in 4 - and 126 -fold decreased potencies, respectively, at the mMC4R. The Trp substitution of the His at the 6 position resulted in 31-fold (6, Trp ${ }^{6}$) and 260-fold (7, DTrp ${ }^{6}$) decreased potencies at the mMC 4 R . The $\mathrm{NaI}\left(2^{\prime}\right)^{6}$-containing peptide 8 possessed 169-fold decreased potency and the DNal $\left(2^{\prime}\right)^{6}$-containing peptide 9 resulted in 87 -fold decreased potency at themMC4R, compared with the His ${ }^{6}$ containing peptide $\mathbf{1}$. Substitution of the imidazole amino acid with the Phe derivatives Tic^{6} (10) and DTic ${ }^{6}$ (11) resulted in 169- and 680-fold decreased potencies at the mMC4R. Insertion of a nitrogen into the phenyl side chain of Phe in peptide $\mathbf{1 2}$ (3PAL ${ }^{6}$) and peptide 13 (4PAL ${ }^{6}$) resulted in 52- and 7-fold decreased potencies at the mMC4R compared with peptide 1. Finally, peptide $14\left(2 T h i^{6}\right)$ resulted in 5-fold decreased potency whereas the $3 \mathrm{Bal}^{6}$-containing tetrapeptide 15 resulted in 12-fold decreased potency at the mMC4R compared with the His6-containing tetrapeptide 1. Peptide 16, containing Anc in the 6 position, resulted in equipotency with the His^{6} peptide $\mathbf{1}$ at the mMC4R. Peptide 17 (racemic Atc) resulted in 42-fold decreased potency, while the DHis ${ }^{6}$ peptide 18 resulted in 29-fold decreased potency at the mMC4R compared with 1.

Melanocortin-5 Receptor. The peripheral MC5R is expressed in a variety of tissues and has been implicated as physiologically participating in the role of exocrine gland function. ${ }^{1,14,42}$ The lead tetrapeptide 1, Ac-His-DPhe-Arg-Trp-NH2, has been previously reported to possess a 3.4 nM agonist EC_{50} at the mMC5R, ${ }^{29}$ a 17% response at $5 \mu \mathrm{M}$ at the $\mathrm{hMC} 5 \mathrm{R},{ }^{34}$ and a $3.9 \mathrm{nM} \mathrm{EC}_{50}$ at the mMC5R reported herein. Substitution at the His ${ }^{6}$ position within this tetrapeptide by Pro, Phe, DPhe, Trp, DTrp, $\operatorname{Nal}\left(2^{\prime}\right)$, DNal(2'), Tic, DTic, 3PAL, 4PAL, 2Thi, 3Bal, Anc, Atc, and DHis (Figure 1) resulted in 10- to 3030-fold decreased potency at the mMC5R. Replacement of the His side chain at the 6 position with Ala (2) or Pro (3) resulted in a 76- or 173-fold decrease in potency, respectively, at the mMC5R. Substitution of the His imidazole side chain with Phe (4) or DPhe (5) resulted in 36 - or 753 -fold decreased potencies, respectively, at the mMC5R. The indole Trp substitution of the His imidazole at the 6 position in peptides 6 (Trp) and 7 (DTrp) resulted in 128- and 319-fold decreased potencies, respectively, at the mMC5R. The $\mathrm{Nal}\left(2^{\prime}\right)^{6}-$ containing peptide 8 possessed 153-fold decreased potency compared to peptide 1, while the DNal ($\left.2^{\prime}\right)^{6}$ peptide 9 possessed 566 -fold decreased potency compared to peptide 1, at the mMC5R. Substitution of the His ${ }^{6}$
amino acid by Tic (10) or DTic (11) resulted in 93- and 3030-fold decreased potencies at the mMC5R compared to peptide 1. Peptides 12 (3PAL ${ }^{6}$) and 13 (4PAL ${ }^{6}$) possessed 101- and 23-fold decreased potencies, respectively, compared with the His ${ }^{6}$ peptide 1 at the mMC5R. Peptides 14 (2Thi ${ }^{6}$) and 15 (3Bal ${ }^{6}$) resulted in 10- and 96 -fold decreased potencies, respectively, compared with peptide $\mathbf{1}$ at the mMC5R. The Anc6-containing peptide (16) resulted in 12 -fold decreased mMC5R potency, the racemic Atc ${ }^{6}$-containing peptide (17) resulted in 600fold decreased mMC5R potency, while the DHis ${ }^{6}$ peptide (18) resulted in 35-fold decreased mMC5R potency, compared with peptide 1.

Discussion

Modification of the His ${ }^{6}$ Side Chain Imidazole by Other Functional Groups. Figure 4 summarizes the effect on potency of modifying the His side chain of the template peptide Ac-Xaa-DPhe-Arg-Trp-NH2 with the amino acids examined in this study, at the melanocortin receptors. Substitution of the His^{6} side chain (α MSH numbering) with Ala (2) in the lead tetrapeptide Ac-His-DPhe-Arg-Trp-NH2 (1) resulted in decreased receptor potencies in the order of $m M C 5 R>m M C 4 R$ $>\mathrm{mMC1R}>\mathrm{mMC} 3 \mathrm{R}$. Replacement of the His ${ }^{6}$ residue of MTII with Ala resulted in 1- to 5-fold decreased potencies at the hMC3, hMC4, and hMC5 receptors, ${ }^{27}$ and His^{6} to Ala in NDP-MSH resulted in only a 4 -fold decreased potency at the hMC4R. ${ }^{28}$ Interestingly, substitution of His^{6} with Ala in a 23-membered Iactam cyclic agonist peptide template (c[COCH $\mathrm{CH}_{2} \mathrm{CO}-\mathrm{His}^{6}-$ DPhe-Arg-Trp-Lys]-NH2) resulted in a lack of cAMP response (up to 5000 nM) at the hMC3R and hMC5R, while resulting in only a 48-fold decreased potency at the hMC4R. ${ }^{24}$ These data suggest that in the tetrapeptide template the peptide backbone at the 6 position is less important for biological activity than the presence of the imidazole side chain, while in longer, more potent peptides such as MTII and NDP-MSH theHis side chain appears to be less important for agonist potency.

When Pro replaces His at the 6 position of tetrapeptide 1, an 87- to 211-fold decrease in ligand potency is observed at the mMC1 and mMC3-5 receptors, which results in approximately the same order of magnitude (within experiment error) reduction in ligand potency at these receptors compared with 1 and results in the same trend in potency as the Ala at these receptors (mMC5R > mMC4R > mMC1R > mMC3R). When Pro is substituted for His^{6} in MTII, a 2- to 4-fold decreased potency is observed at the hMC4R and hMC3R, while a 2.5 -fold increased potency is observed for the Pro6MTII peptide at the hMC5R. ${ }^{22}$ Interestingly, substitution of His ${ }^{6}$ with Pro in the cyclic agonist peptide template, $\mathrm{c}\left[\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CO}-\mathrm{His}^{6}\right.$-DPhe-Arg-Trp-Lys]$\mathrm{NH}_{2}$, resulted in 10- and 76-fold decreased potency at the hMC3R and hMC4R while increasing potency 2 -fold at the hMC5R. ${ }^{24}$ In this latter study by Bednarek et al., inverting the stereochemistry of the Pro ${ }^{6}$ to DPro ${ }^{6}$ in their peptide template resulted in 3-5\% agonist stimuIation at $10 \mu \mathrm{M}$. Modification of the His in the 6 position by Pro in the MTII peptide template resulted in the identification of modifications that might lead to increased MC4R selectivity versus that of the MC3R. ${ }^{20-22}$

Replacement of the His^{6} imidazol e by the phenyl side chain of Phe (4) resulted in only a 4-fold decrease in

Figure 4. Graphical representation summarizing the effect on melanocortin receptor (Y axis) agonist $E C_{50}$ values (Z axis) of the indicated amino acid substitution (X axis) of the H is residue in the tetrapeptide template Ac-His-DPhe-Arg-Trp-NH ${ }_{2}$.
potency at the mMC4R while possessing $25-$ - 76 -, and 36 -fold decrease in potencies at the mMC1R, mMC3R, and mMC5R, respectively, compared with 1 . This information suggests that substitution of a His by Phefor the design of non-peptide, MC4R-selective, smallmolecule agonists may bea viable option. When this Phe amino acid is used for the development of non-peptide molecules, the side chain does not need to possess a protecting group like the His residue may during synthesis, facilitating an easier synthetic chemistry strategy. Inversion of stereochemistry to the DPhe ${ }^{6}$ containing tetrapeptide 5 resulted decreased potencies compared to the His^{6} peptide $\mathbf{1}(\mathrm{mMC} 4 \mathrm{R}>\mathrm{mMC5R}>$ mMC1R) while losing the ability to stimulate the mMC3R at up to $100 \mu \mathrm{M}$. When tetrapeptides 4 (Phe ${ }^{6}$) and 5 (DPhe ${ }^{6}$) are compared, a 2-, 31-, and 21 -fold decrease in potency of the DPhe ${ }^{6}$ peptide compared with the Phe ${ }^{6}$ tetrapeptide was observed at the mMC1R, mMC4R, and mMC5R, respectively (Figure 4).

The Tic amino acid ${ }^{43}$ (Figure 1) is a topographically constrained derivative of Phe that severely restricts rotation about the χ_{1} and χ_{2} side chain torsional angles and has been previously reported to result in increased biological activities and potencies. ${ }^{44}$ In the tetrapeptides $10\left(\mathrm{Tic}^{6}\right)$ and 11 (DTic ${ }^{6}$), the l-configured compound possessed full agonism at the melanocortin receptors with 76 - to 169 -fold decreased potencies compared with the His^{6} tetrapeptide $\mathbf{1}$ while the d-configured molecule (11) resulted in a lack of observable mMC3R stimulation (was not an mMC3R antagonist) at up to $100 \mu \mathrm{M}$ and resulted in 562- to 3000-fold decreased potencies at the mMC1R, mMC4R, and mMC5R. When the Tic ${ }^{6}$ tetrapeptide (10) was compared with the corresponding Phe ${ }^{6}$ (4) peptide, the L configuration resulted in 5 -fold decreased potency, equipotency, and 41- and 3-fold (equipotent within experimental error) decreased potencies at the mMC1R, mMC3R, mMC4R, and mMC5R, respectively. Comparing the DTic ${ }^{6}$ tetrapeptide (11) with their corresponding DPhe ${ }^{6}(5)$ peptide, the Dconfiguration resulted in equipotency at the mMC1R,
lack of stimulation at up to $100 \mu \mathrm{M}$ at the $\mathrm{mMC3R}$, 5and 4 -fold decreased potency at the $\mathrm{mMC4R}$ and mMC5R, respectively.

Modification of the Phe ${ }^{6}$ benzyl ring by the insertion of a nitrogen in either the meta (3PAL, 12) or para (4 PAL, 13) position generally resulted in decreased melanocortin receptor potency compared with peptide $\mathbf{1}$. Tetrapeptide Ac-4PAL-DPhe-Arg-Trp-NH2 (13) resulted in only 7 - to 23 -fold decreased melanocortin receptor potencies compared with $\mathbf{1}$ and was equipotent at the $\mathrm{mMC1R}, \mathrm{mMC4R}$, and MMC5R within experimental error but was 5 -fold more potent at the mMC3R than the Phe ${ }^{6}$-containing tetrapeptide 4. Thus, incorporation of a nitrogen into the Phe side chain at the meta or para position generally resulted in decreased melanocortin receptor potency except for the 4PAL derivative at the mMC3R.

Naphthyl(2') side chain replacement of the His^{6} (1), tetrapeptide 8, resulted in decreased potencies at the melanocortin receptors compared with 1. Inversion of stereochemistry to DNal (2') ${ }^{6}$ in tetrapeptide 9 resulted in a loss of agonist activity at the mMC3R (up to 100 $\mu \mathrm{M}$) and 87 - to 566 -fold decreased potencies at the mMC1R, mMC4R, and mMC5R compared with 1. Comparison of the $\mathrm{Nal}\left(2^{\prime}\right)^{6}$ peptide $\mathbf{8}$ with the DNal($\left.2^{\prime}\right)^{6}$ peptide 9 resulted in nearly equipotent activities at the mMC1R, mMC4R, and mMC5R.

Substitution of the imidazole by an indole to Trp (6) at the 6 position resulted in decreased potencies at the $\mathrm{mMC1}$ and $\mathrm{mMC3}-5$ receptors compared with tetrapeptide 1. Converting Trp to the DTrp (7) stereochemistry at the 6 position resulted in a loss of agonist activity at the mMC3R (up to $100 \mu \mathrm{M}$) and 260- to 328fold decreased potencies at the mMC1 and mMC4-5 receptors compared with $\mathbf{1}$. Comparing tetrapeptides 6 (Trp^{6}) and 7 (DTrp^{6}) resulted in equipotent activities at the mMC1R and mMC5R (within experimental error) and an 8 -fold decreased potency for the DTrp^{6} analogue at the mMC4R. Upon substitution of His^{6} with Trp in the SHU 9119 peptide (Ac-NIe-c[Asp-His-DNal(2')-Arg-

Trp-Lys]-NH2 $)$, 51-, 25-, and 16-fol d decreased potencies were observed for the mMC1R agonist and the mMC3R and mMC 4 R antagonists, respectively, while the compound was converted from a full agonist ($\mathrm{His}^{6} \mathrm{EC}_{50}=$ 2.3 nM) to a compound resulting in only slight agonist activity up to $1 \mu \mathrm{M}\left(\operatorname{Trp}^{6}\right) .{ }^{17} \mathrm{U}$ pon substitution of the indole nitrogen of $\operatorname{Trp}^{6}(6)$ with a sulfur (3Bal, ${ }^{6}$ 15), nearly equipotency was observed at all the melanocortin receptors examined, suggesting that the heteroatom of the indolering at the 6 position may not be particularly important for ligand potency. H owever, comparison of the 2 Thi 6 (14) and $3 \mathrm{Bal}^{6}$ (15) peptides resulted in 22and 7 -fold decreased potencies, equipotency, and 10-fold decreased potency at the mMC1R, mMC3R, mMC4R, and mMC5R, respectively, suggesting that the threedimensional location of the benzyl portion of the indolelike structure does not effect the mMC4R ligandreceptor interactions as much as the other receptor isoforms.

Comparison of the 2 Thi 6 amino acid derivative (Figure 1) with the His^{6}-containing tetrapeptides resulted in 5to 19 -fold decreased melanocortin receptor potencies, suggesting that the electronic and basic features of the imidazole ring may be important for receptor potency, perhaps through salt bridge or hydrogen-bonding interactions.

MC4 Versus MC3 Receptor Selectivity. I dentification of ligands selective for either of the centrally located melanocortin receptors, MC3R or MC4R, is highly sought because both these receptors have been identified as physiologically participating in the neuroendocrine process of energy homeostasis using a combination of nonspecific melanocortin agonists and antagonists and knockout mice. ${ }^{8-10,35,45}$ As mentioned previously, substitution of His with Pro in the MTII agonist template resulted in the identification of this amino acid position for brain MC4 versus MC3 receptor selectivity. ${ }^{20-22}$ The recent public disclosure by Hoffmann-La Roche, Inc. indicated the His position as the most critical position for the identification of MC4 versus MC3 receptor compounds, as demonstrated by the peptide c[Asp-(D,L)-Atc-DPhe-Arg-Trp-Lys]-NH 2 possessing 65 nM hMC4R potency and only possessing slight agonist activity at thehMC3R at micromolar concentrations. ${ }^{25}$ The studies presented herein support this hypothesis by the identification of compounds that possess full agonist activity at the mMC4R while lacking mMC3R full agonist activity at up to $100 \mu \mathrm{M}$ (Figure 2). The most potent and mMC4R-selective (versus mMC3R) tetrapeptide is Ac-Anc-DPhe-Arg-Trp-NH2 (16), which is equipotent to the His-containing tetrapeptide $\mathbf{1}$ and only 4 -fold less potent than the endogenous agonist $\alpha-\mathrm{MSH}$ at the mMC4R (Table 1) while only possessing slight agonist activity ($<50 \%$ maximal stimulation at $100 \mu \mathrm{M}$) at the mMC3R (Figure 2). ${ }^{46}$ Unexpectantly, Ac-Anc-DPhe-Arg-Trp- NH_{2} (16) resulted in a micromolar mMC3R antagonist (Figure 3), but even with this pharmacological profile, if the compound is administered in the high nanomolar range, stimulation of the MC4R should result, with a postulated absence of activity at the mMC3R. The tetrapeptide containing the same amino acid reported by Danho and colleagues, ${ }^{25} \mathrm{Ac}$-(racemic)-Atc-DPhe-Arg-Trp-NH2 (17), was 34-fold less potent than peptide 16 at the mMC4R and only 11-fold less

Figure 5. Comparison of the Phe^{6}-containing tetrapeptide 4 EC_{50} values at the centrally located mMC3R and mMC4 receptors. This figure illustrates that this compound possesses 160 -fold receptor selectivity for the MC4R versus the MC3R.
potent than the previously identified cyclic hexapeptide. ${ }^{25}$ Similar to the Roche cyclic hexapeptide (although it was not mentioned if it was tested for MC3R antagonist activity), the Atc ${ }^{6}$-containing peptide 17 only possessed slight agonist activity ($<50 \%$ maximal stimulation at $100 \mu \mathrm{M}$) at the mMC3R. Figure 5 illustrates the MC4 versus MC3 receptor selectivity for the Phe ${ }^{6}$ containing tetrapeptide (4). I nterestingly, the aromatic side chains in the D configuration at the 6 position resulted in decreased micromolar potencies at the mMC4R but did not stimulate the mMC3R at up to 100 $\mu \mathrm{M}$. These data and the fact that the Atc peptide $\mathbf{1 7}$ is actually a racemic mixture might suggest that the DAtc ${ }^{6}$-containing tetrapeptide might be more potent and selective for the MC4R than the Anc peptide reported herein. Thus, these data support the hypothesis that the His ${ }^{6}$ position is important for MC4 versus MC3 receptor selectivity ${ }^{20-22,25}$ and extend this hypothesis to include an aromatic benzyl ring in the proper topographical threedimensional space as an additional consideration. The information gained by the studies reported herein are extremely valuable and applicable for the design of small-molecule, non-peptide, MC4Rselective agonists.

Conclusions

This study reports modifications of the His^{6} side chain imidazole ring with various aromatic and nonaromatic substitutions in the tetrapeptide template Ac-His-DPhe-Arg-Trp- NH_{2}. The data reported herein support the hypothesis that this His position of melanocortin agonists is an important residue for the design of compounds selective for the centrally located MC4 versus MC3 receptors. We have identified melanocortin tetrapeptide agonists with MC4R versus MC3R selectivity ranging from >4700 to 9 -fold with a trend for this selectivity observed for aromatic d-configured amino acids. The most potent MC4R agonist and MC4R- versus MC3R-sel ective compound identified from this study is the Ac-Anc-DPhe-Arg-Trp-NH2 tetrapeptide that possesses an MC4R EC50 of 21 nM with only micromolar antagonism and a slight agonist activity ($<50 \%$ maximal stimulation at $100 \mu \mathrm{M}$) at the MC3R, demonstrating >4700-fold MC4R versus MC3R agonist selectivity. Additionally, the data reported herein provide experimental evidence that the His amino acid may be replaced by other amino acids for the design of MC4R-
selective non-peptide molecules. Substitution of the His side chain in non-peptide mol ecules by amino acids such as Phe will potentially dramatically simplify the chemistry required to synthesize molecules possessing potent MC4R agonist activity.

Experiemental Section

Peptide Synthesis. Peptide synthesis was performed using standard Fmoc methodology ${ }^{30}$ on an automated synthesizer (Advanced ChemTech 440MOS, Louisville, KY). The amino acids $\mathrm{Fmoc}-\mathrm{Tyr}(\mathrm{tBu})$, $\mathrm{Fmoc}-\mathrm{His}(\mathrm{Trt}), \mathrm{Fmoc}-\mathrm{Arg}(\mathrm{Pbf})$, $\mathrm{Fmoc}-$ DPhe, F moc-Trp(Boc), Fmoc-Pro, Fmoc-Ala, F moc-Phe, FmocDPhe, F moc-3-(2-naphthyl)-alanine [$\mathrm{Nal}\left(2^{\prime}\right)$], and $\mathrm{Fmoc}-3$-(2-Naphthyl)-d-alanine[DNal(2')] were purchased from Peptides International (Louisville, KY). Fmoc-DTrp(Boc) was purchased from Advanced ChemTech (Louisville, KY). F moc-3-(2-thienyl)alanine (2-Thi), F moc-3-(3-pyridinyl)alanine (3-Pal), and Fmoc-3-(4-pyridinyl)alanine (4-Pal) were purchased from Bachem (Torrance, CA). Fmoc-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) and Fmoc-d-1,2,3,4-tetrahydroisoquinoline-3carboxylic acid (DTic) were purchased from Synthetech (AIbany, OR). Fmoc-(racemic)-aminotetrahydro-2-naphthylcarboxylic acid (Atc) and Fmoc-amino-2-naphthyl carboxylic acid (Anc) were purchased from Pharma Core (High Point, NC). The coupling reagents 2 -(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole (HOBt) were purchased from Peptides International. Glacial acetic acid (HOAc), dichloromethane (DCM), methanol (MeOH), acetonitrile (ACN), and anhydrous ethyl ether were purchased from Fisher (F air Lawn, NJ). N ,NDimethylformamide (DMF) was purchased from Burdick and J ackson (McGaw Park, IL). Trifluoroacetic acid (TFA), 1,3diisopropylcarbodiimide(DIC), pyridine, piperidine, and acetic anhydride were purchased from Sigma (St. Louis, MO). N,NDiisopropylethylamine (DIEA) and triisopropylsilane (Tis) were purchased from Aldrich (Milwaukee, WI). All reagents and chemicals were ACS grade or better and were used without further purification.

The peptides were assembled on Rink amide MBHA resin (0.44 mequiv/g substitution) purchased from Peptides International. The synthesis was performed using a 40 -well Teflon reaction block with a coarse Teflon frit. Approximately 100 mg of resin (0.044 mmol) was added to each reaction block well. The resin was allowed to swell for 2 h in DMF and deprotected using 25% piperidine in DMF for 5 min followed by a 20 min of 25% piperidine incubation at 450 rpm . A positive K aiser ${ }^{46}$ test resulted, indicating free amine groups on the resin. The growing peptide chain was added to the amide resin using the general amino acid cycle as follows: 500 $\mu \mathrm{L}$ DMF is added to each reaction well to "wet the frit"; 3-fol d excess amino acid starting from the C terminus is added (275 $\mu \mathrm{L}$ of 0.5 M amino acid solution containing 0.5 M HOBt in DMF) followed by the addition of $275 \mu \mathrm{~L}$ of 0.5 M DIC in DMF; the reaction well volume is brought up to 3 mL using DMF. The coupling reaction is mixed for 1 h at 450 rpm , followed by emptying of the reaction block by positive nitrogen gas pressure. A second coupling reaction is performed by the addition of $500 \mu \mathrm{~L}$ of DMF to each reaction vessel, followed by the addition of $275 \mu \mathrm{~L}$ of the respective amino acid (3-fold excess), $275 \mu \mathrm{~L}$ of 0.5 M HBTU , and $225 \mu \mathrm{~L}$ of 1 M DIEA. The reaction-well volume is brought up to 3 mL with DMF and mixed at 450 rpm for 1 h . After the second coupling cycle, the reaction block is emptied and the $\mathrm{N} \alpha-\mathrm{F}$ moc-protected peptide resin is washed with DMF ($4.5 \mathrm{~mL}, 4$ times). N $\alpha-F \mathrm{moc}$ deprotection is performed by the addition of 4 mL of 25% piperidine in DMF and mixed for 5 min at 450 rpms followed by a 20 min deprotection at 450 rpm . The reaction well is washed with DMF ($4.5 \mathrm{~mL}, 4$ times), and the next coupling cycle is performed as described above. After $\mathrm{N} \alpha-\mathrm{F} \mathrm{moc}$ deprotection of the final amino acid, acetylation of the $N \alpha$-amine was performed by addition of 2 mL of acetic anhydride, 1 mL of pyridine, and 1 mL of DMF to the reaction block wells and mixing for 30 min at 450 rpm . The acetylated peptide resin
was washed with DCM ($4 \mathrm{~mL}, 5$ times) and dried thoroughly prior to cleavage from the resin. Deprotection of the amino acid side chains and cleavage of the acetylated peptide from the resin was performed by incubating the peptide resin with 3 mL of cleavage cocktail (95% TFA, 2.5% water, 2.5% Tis) for 3 h at 450 rpm . The cleavage product was emptied from the reaction block into a cleavage block containing 7 mL collection vials under positive nitrogen gas pressure. The resin was washed with 1.5 mL of cleavage cocktail for 5 min and 450 rpm and added to the previous cleavage solution. The peptides were transferred to preweighed 50 mL conical tubes and precipitated with cold ($4^{\circ} \mathrm{C}$) anhydrous ethyl ether (up to 50 mL). The flocculent peptide was pelleted by centrifugation (Sorval Super T21 high-speed centrifuge using the swinging bucket rotor) at 4000 rpm for 5 min , the ether was decanted off, and the peptide was washed one time with cold anhydrous ethyl ether and again pelleted. The crude peptide was dried in vacuo for 48 h . The crude peptide yields ranged from 60% to 90% of the theoretical yields. A $15-30 \mathrm{mg}$ sample of crude peptide was purified by RP-HPLC using a Shimadzu chromatography system with a photodiode array detector and a semi preparative RP-HPLC C18 bonded silica column (Vydac 218TP1010, $1.0 \mathrm{~cm} \times 25 \mathrm{~cm}$) and was lyophilized. The purified peptides were at least $>95 \%$ pure as determined by analytical RP-HPLC and had the correct molecular mass (University of Florida protein core facility) (Table 2).

One-Dimensional ${ }^{1} \mathbf{H}$ Nuclear Magnetic Resonance Spectroscopy (NMR Data in Supporting Information). Peptides were analyzed for purity and structural integrity by nuclear magnetic resonance (NMR). Peptides were dissolved in $600 \mu \mathrm{~L}$ of DMSO_{6} that contained 0.1% TMS, with an approximatefinal concentration of 2 mM . ${ }^{1} \mathrm{H}$ NMR spectra were obtained at $27^{\circ} \mathrm{C}$ on a Bruker Avance 500 MHz spectrometer in the Advanced Magnetic Resonance I maging and Spectroscopy facility at the McKnight Brain Institute, University of Florida. One-dimensional ${ }^{1} \mathrm{H}$ data were collected using the decoupler coil of a Bruker 5 mm BBO probe with 128 scans, 26684 total time domain points, a tip angle of 45°, an acquisition time of 2 s , and a delay time of 3 s . The spectral widths were 12 ppm , and TMS was referenced to 0.0 ppm . To correctly determi ne the integral values of peaks that occasionally occurred in the region around 3.3 ppm , a standard presaturation procedure (Bruker zgf2pr) for $\mathrm{H}_{2} \mathrm{O}$ in DMSO was used. Prior to Fourier transformation, the FID was apodized with an exponential line broadening of 0.5 Hz and transformed with minimal zero-filling to 16 K data points. The data were processed and analyzed using Bruker XWINNMR and XWINPLOT software. In the ${ }^{1} \mathrm{H}$ NMR spectra of peptides $\mathbf{3 , 1 0}$, and 11, doubling of the resonances was observed in an approximately 60:40 ratio. These peptides contain either a Pro or a "proline-like" Tic amino acid residue (Figure 1). The doubling can be explained by rotational isomerization about the Pro-DPhe, Tic-DPhe, and DTic-DPhe amide bonds of peptides 3, 10, and 11, respectively. In these cases, the total integration of both resonances is reported.

Cell Culture and Transfection. Briefly, HEK-293 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) with 10\% fetal calf serum and seeded 1 day prior to transfection at $(1-2) \times 10^{6}$ cells per 100 mm dish. Melanocortin receptor DNA in the pCDNA ${ }_{3}$ expression vector ($20 \mu \mathrm{~g}$) was transfected using the calcium phosphate method. Stable receptor populations were generated using G418 selection (1 $\mathrm{mg} / \mathrm{mL}$) for subsequent bioassay analysis.

Functional Bioassay. HEK-293 cells stably expressing the melanocortin receptors were transfected with $4 \mu \mathrm{~g}$ of CRE/ β galactosidase reporter gene as previously described. ${ }^{29,47,48}$ Briefly, 5000-15 000 posttransfection cells were plated into 96-well Primera plates (Falcon) and incubated overnight. Forty-eight hours after transfection, the cells werestimulated with $100 \mu \mathrm{~L}$ of peptide ($10^{-4}-10^{-12} \mathrm{M}$) or forskolin ($10^{-4} \mathrm{M}$) control in assay medium (DMEM containing $0.1 \mathrm{mg} / \mathrm{mL}$ BSA and 0.1 mM isobutylmethylxanthine) for 6 h . The assay media was aspirated, and $50 \mu \mathrm{~L}$ of Iysis buffer (250 mM Tris-HCl, $\mathrm{pH}=8.0$, and 0.1% Triton $\mathrm{X}-100$) was added. The plates were
stored at $-80^{\circ} \mathrm{C}$ overnight. The plates containing the cell lysates were thawed the following day. Aliquots of $10 \mu \mathrm{~L}$ were taken from each well and transferred to another 96 -well plate for relative protein determination. To the cell Iysate plates, $40 \mu \mathrm{~L}$ of phosphate-buffered saline with 0.5% BSA was added to each well. Subsequently, $150 \mu \mathrm{~L}$ of substrate buffer (60 mM sodium phosphate, $1 \mathrm{mM} \mathrm{MgCl}_{2}, 10 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM} \beta$-mercaptoethanol, 200 mg of ONPG) was added to each well and the plates were incubated at $37{ }^{\circ} \mathrm{C}$. The sample absorbance, OD_{405}, was measured using a 96 -well plate reader (M olecular Devices). The relative protein was determined by adding 200 $\mu \mathrm{L}$ of 1:5 dilution Bio Rad G250 protein dye/water to the 10 $\mu \mathrm{L}$ cell lysate sample taken previously, and the OD_{595} was measured on a 96 -well plate reader (M ol ecular Devices). Data points were normalized to both the relative protein content and nonreceptor-dependent forskolin stimulation. The antagonistic properties of these compounds were evaluated by the ability of these ligands to competitively displace the MTII agonist (Bachem) in a dose-dependent manner, at up to 10 $\mu \mathrm{M} .{ }^{48} \mathrm{ThepA}_{2}$ values were generated using the Schild analysis method. ${ }^{49}$

Data Analysis. EC_{50} and pA_{2} values represent the mean of duplicate experiments performed in quadruplet or more independent experiments. EC_{50} and pA_{2} estimates, and their associated standard errors, were determined by fitting the data to a nonlinear least-squares analysis using the PRISM program (version 3.0, GraphPad, Inc.). The results are not corrected for peptide content, although all the peptides examined in this study were determined to have approximately equal peptide content as determined by using Beer's Law.

Acknowledgment. This work has been supported by NIH Grant RO1-DK 57080. Carrie Haskell-Luevano is a recipient of a Burroughs Wellcome Career Award in the Biomedical Sciences. We give special thanks to Dr. Arthur S. Edison and Mr. J ames R. Rocca at the University of Florida McKnight Brain Institute for their extensive technical assistance in the acquisition and analysis of NMR data.

Supporting Information Available: NMR spectra of peptides 1-18. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Cone, R. D.; Lu, D.; Kopula, S.; Vage, D. I.; Klungland, H.; Boston, B.; Chen, W.; Orth, D. N.; Pouton, C.; Kesterson, R. A. The Melanocortin Receptors: Agonists, Antagonists, and the Hormonal Control of Pigmentation. Recent Prog. Horm. Res. 1996, 51, 287-318.
(2) Hruby, V.J.; Wilkes, B. C.; Hadley, M. E.; Al-Obeidi, F.; Sawyer, T. K.; Staples, D. J.; DeVaux, A.; Dym, O.; Castrucci, A. M.; Hintz, M. F.; Riehm, J. P.; Rao, K. R. α-Melanotropin: The Minimal Active Sequence in the Frog Skin Bioassay. J. Med. Chem. 1987, 30, 2126-2130.
(3) Castrucci, A. M. L.; Hadley, M. E.; Sawyer, T. K.; Wilkes, B. C.; Al-Obeidi, F.; Staples, D. J .; DeVaux, A. E.; Dym, O.; Hintz, M. F.; Riehm, J.; Rao, K. R.; Hruby, V. J. α-Melanotropin: The Minimal Active Sequence in the Lizard Skin Bioassay. Gen. Comp. Endocrinol. 1989, 73, 157-163.
(4) Haskell-Luevano, C.; Sawyer, T. K.; Hendrata, S.; North, C.; Panahinia, L.; Stum, M.; Staples, D. J .; Castrucci, A. M.; Hadley, M. E.; Hruby, V. J. Truncation Studies of α-Melanotropin Peptides I dentifies Tripeptide Analogues Exhibiting Prolonged Agonist Bioactivity. Peptides 1996, 17, 995-1002.
(5) Lu, D.; Willard, D.; Patel, I. R.; K adwell, S.; Overton, L.; Kost, T.; Luther, M.; Chen, W.; Y owchik, R. P.; Wilkison, W. O.; Cone, R. D. Agouti Protein Is an Antagonist of the Melanocyte-Stimulating-Hormone Receptor. Nature 1994, 371, 799-802.
(6) Shutter, J . R.; Graham, M.; Kinsey, A. C.; Scully, S.; Lüthy, R.; Stark, K. L. Hypothalamic Expression of ART, a Novel Gene Related to Agouti, Is Up-Regulated in Obese and Diabetic Mutant Mice. Genes Dev. 1997, 11, 593-602.
(7) Ollmann, M. M.; Wilson, B. D.; Yang, Y.-K.; Kerns, J . A.; Chen, Y.; Gantz, I.; Barsh, G. S. Antagonism of Central Melanocortin Receptors in Vitro and in Vivo by Agouti-Related Protein. Science 1997, 278, 135-138.
(8) Chen, A. S.; Marsh, D. J.; Trumbauer, M. E.; Frazier, E. G.; Guan, X. M.; Yu, H.; Rosenblum, C. I.; Vongs, A.; Feng, Y.; Cao, L.; Metzger, J . M.; Strack, A. M.; Camacho, R. E.; Mellin, T. N.; Nunes, C. N.; Min, W.; Fisher, J .; Gopal-Truter, S.; Macl ntyre, D. E.; Chen, H. Y.; Van Der Ploeg, L. H. Inactivation of the Mouse Melanocortin-3 Receptor Results in Increased F at Mass and Reduced Lean Body Mass. Nat. Genet. 2000, 26, 97-102.
(9) Butler, A. A.; Kesterson, R. A.; Khong, K.; Cullen, M. J.; Pelleymounter, M. A.; Dekoning, J .; Baetscher, M.; Cone, R. D. A Unique Metabolic Syndrome Causes Obesity in the Melano-cortin-3 Receptor-Deficient Mouse. Endocrinology 2000, 141, 3518-3521.
(10) Huszar, D.; Lynch, C. A.; Fairchild-Huntress, V.; Dunmore, J. H.; Smith, F. J.; Kesterson, R. A.; Boston, B. A.; Fang, Q.; Berkemeir, L. R.; Gu, W.; Cone, R. D.; Campfield, L. A.; Lee, F. Targeted Disruption of the Melanocortin-4 Receptor Results in Obesity in Mice. Cell 1997, 88, 131-141.
(11) Hruby, V. J .; Wilkes, B. C.; Cody, W. L.; Sawyer, T. K.; Hadley, M.E. Melanotropins: Structural, Conformational and Biological Considerations in the Development of Superpotent and Superprolonged Analogs. Pept. Protein Rev. 1984, 3, 1-64.
(12) Mountjoy, K. G.; Robbins, L. S.; Mortrud, M. T.; Cone, R. D. The Cloning of a Family of Genes That Encode the Melanocortin Receptors. Science 1992, 257, 1248-1251.
(13) Lu, D.; Väge, D. I.; Cone, R. D. A Ligand-Mimetic Model for Constitutive Activation of the Melanocortin-1 Receptor. Mol. Endocrinol. 1998, 12, 592-604.
(14) Chen, W.; Kelly, M. A.; Opitz-Araya, X.; Thomas, R. E.; Low, M. J.; Cone, R. D. Exocrine Gland Dysfunction in MC5-R Deficient Mice: Evidence For Coordinated Regulation of Exocrine Gland Functions by Melanocortin Peptides. Cell 1997, 91, 789-798.
(15) Chen, L.; Cheung, A. W.-H.; Chu, X.-J .; Danho, W.; Swistok, J .; Yagaloff, K. A. In World Intellectual Property Organization; F. H offmann-La Roche AG, 2001; Patent WO 01/74844 A2.
(16) Hruby, V. J.; Lu, D.; Sharma, S. D.; Castrucci, A. M. L.; Kesterson, R. A.; AI-Obeidi, F. A.; Hadley, M. E.; Cone, R. D. Cyclic Lactam α-Melanotropin Analogues of Ac-Nle ${ }^{4}-\mathrm{c}\left[\mathrm{Asp}^{5}\right.$, DPhe ${ }^{7}$, Lys ${ }^{10}$]- $\alpha-\mathrm{MSH}(4-10)-\mathrm{NH}_{2}$ with Bulky Aromatic Amino Acids at Position 7 Show High Antagonist Potency and Selectivity at Specific Melanocortin Receptors. J. Med. Chem. 1995, 38, 3454-3461.
(17) Haskell-Luevano, C.; Lim, S.; Yuan, W.; Cone, R. D.; Hruby, V. J. Structure Activity Studies of the Melanocortin Antagonist SHU9119 M odified at the 6, 7, 8, and 9 Positions. Peptides 2000, 21, 49-57.
(18) AI-Obeidi, F.; Hadley, M. E.; Pettitt, B. M.; Hruby, V.J . Design of a New Class of Superpotent Cyclic α-M elanotropins Based on Quenched Dynamic Stimulations. J. Am. Chem. Soc. 1989, 111, 3413-3416.
(19) Al-Obeidi, F.; Castrucci, A. M.; Hadley, M. E.; Hruby, V. J . Potent and Prolonged Acting Cyclic Lactam Analogues of α-Melanotropin: Design Based on M olecular Dynamics. J. Med. Chem. 1989, 32, 2555-2561.
(20) Grieco, P.; Han, G.; Hruby, V. J . New Dimensions in the Design of Potent and Receptor Selective Melanotropin Analogues. In Peptides for the New Millenium, Proceedings of the 16th American Peptide Symposium; Fields, G. B., Tam, J. P., and Barany, G., Eds.; Kluwer: The Netherlands, 2000; pp 541-542.
(21) Grieco, P.; Novellino, E.; Lavecchia, A.; Weinberg, D.; MacNeil, T.; Hruby, V. J. Synthesis and Conformational Studies of Cyclic Peptides with Antagonist Activity at Melanocortin 3 and 4 Receptors. In Proceedings of the 26th European Peptide Symposium; Martinez, J.-A., Eds.; EDK: Paris, 2001; pp 643-644.
(22) Bednarek, M. A.; Macneil, T.; Kalyani, R. N.; Tang, R.; Van der Ploeg, L. H.; Weinberg, D. H. Analogs of MTII, Lactam Derivatives of α-Melanotropin, M odified at the N-Terminus, and Their Selectivity at Human Melanocortin Receptors 3, 4, and 5. Biochem. Biophys. Res. Commun. 1999, 261, 209-213.
(23) Kavarana, M. J .; Han, G.; Cai, M.; Trivedi, D.; Hruby, V. J. The Design and Evaluation of a Novel Selective and Potent Agonist of the Human Melanocortin Receptor 4. In Proceedings of the 2nd International/ 17th American PeptideSymposium; Lebel M., Houghten, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp 708-709.
(24) Bednarek, M. A.; MacNeil, T.; Tang, R.; Kalyani, R. N.; Van der Ploeg, L. H.; Weinberg, D. H. Potent and Selective Peptide Agonists of alpha-M elanotropin Action at Human Melanocortin Receptor 4: Their Synthesis and Biological Evaluation in Vitro. Biochem. Biophys. Res. Commun. 2001, 286, 641-645.
(25) Danho, W.; Swistok, J.; Cheung, A.; Chu, Y.-J .; Wang, Y.; Chen, L.; Bartkovitz, D.; Gore, V.; Qi, L.; Fry, D.; Greeley, D.; Sun, H.; Guenot, J.; Franco, L.; Kurylko, G.; Rumennik, L.; Yagal off, K. Highly Selective Cyclic Peptides for Human Melanocortin-4 Receptor (MC-4 R): Design, Synthesis, Bioactive Conformation,
and Pharmacological Evaluation as an Anti-obesity Agent. In Proceedings of the 2nd International/ 17th American Peptide Symposium; Lebel M., Houghten, R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp 701-703.
(26) Skuladottir, G. V.; J onsson, L.; Skarphedinsson, J. O.; Mutulis, F.; Muceniece, R.; Raine, A.; Mutule, I.; Helgason, J.; Prusis, P.; Wikberg, J. E.; Schioth, H. B. Long Term Orexigenic Effect of a Novel Melanocortin 4 Receptor Selective Antagonist. Br. J . Pharmacol. 1999, 126, 27-34.
(27) Bednarek, M. A.; Silva, M. V.; Arison, B.; MacNeil, T.; Kalyani, R. N.; Huang, R. R.; Weinberg, D. H. Structure-Function Studies on the Cyclic Peptide MT-II, Lactam Derivative of α-Melanotropin. Peptides 1999, 20, 401-409.
(28) Yang, Y.; Fong, T. M.; Dickinson, C. J.; Mao, C.; Li, J. Y.; Tota, M. R.; Mosley, R.; Van Der Ploeg, L. H.; Gantz, I. Molecular Determinants of Ligand Binding to the Human Melanocortin-4 Receptor. Biochemi stry 2000, 39, 14900-14911.
(29) Haskell-Luevano, C.; Holder, J . R.; Monck, E. K.; Bauzo, R. M. Characterization of Melanocortin NDP-MSH Agonist Peptide Fragments at the Mouse Central and Peripheral Melanocortin Receptors. J. Med. Chem. 2001, 44, 2247-2252.
(30) Stewart, J. M.; Young, J . D. Solid Phase Peptide Synthesis, 2nd ed.; Pierce Chemical Co.: Rockford, IL, 1984.
(31) Chhajlani, V.; Wikberg, J. E. S. Molecular Cloning and Expression of the Human Melanocyte Stimulating Hormone Receptor cDNA. FEBS Lett. 1992, 309, 417-420.
(32) Roselli-Rehfuss, L.; Mountjoy, K. G.; Robbins, L. S.; Mortrud, M. T.; Low, M. J.; Tatro, J. B.; Entwistle, M. L.; Simerly, R. B.; Cone, R. D. Identification of a Receptor for γ Melanotropin and Other Proopiomel anocortin Peptides in the Hypothalamus and Limbic System. Proc. NatI. Acad. Sci. U.S.A. 1993, 90, 88568860.
(33) Gantz, I.; K onda, Y.; Tashiro, T.; Shimoto, Y.; Miwa, H.; Munzert, G.; Watson, S. J.; DelValle, J .; Yamada, T. Molecular Cloning of a Novel Melanocortin Receptor. J. Biol. Chem. 1993, 268, 8246-8250.
(34) Bednarek, M. A.; MacNeil, T.; Kalyani, R. N.; Tang, R.; Van der Ploeg, L. H.; Weinberg, D. H. Analogs of Lactam Derivatives of $\alpha-$ Melanotropin with Basic and Acidic Residues. Biochem. Biophys. Res. Commun. 2000, 272, 23-28.
(35) Fan, W.; Boston, B. A.; Kesterson, R. A.; Hruby, V. J.; Cone, R. D. Role of Melanocortinergic Neurons in Feeding and the Agouti Obesity Syndrome. Nature 1997, 385, 165-168.
(36) Mergen, M.; Mergen, H.; Ozata, M.; Oner, R.; Oner, C. Rapid Communication: A Novel Melanocortin 4 Receptor (MC4R) Gene Mutation Associated with Morbid Obesity. J. Clin. Endocrinol. Metab. 2001, 86, 3448-3451.
(37) Vaisse, C.; Clement, K.; Guy-Grand, B.; Froguel, P. A Frameshift Mutation in Human MC4R Is Associated with a Dominant Form of Obesity. Nat. Genet. 1998, 20, 113-114.
(38) Vaisse, C.; Clement, K.; Durand, E.; Hercberg, S.; Guy-Grand, B.; Froguel, P. Melanocortin-4 Receptor Mutations Are a Frequent and Heterogeneous Cause of Morbid Obesity. J. Clin. Invest. 2000, 106, 253-262.
(39) Farooqi, I. S.; Yeo, G. S.; Keogh, J. M.; Aminian, S.; J ebb, S. A.; Butler, G.; Cheetham, T.; O’Rahilly, S. Dominant and Recessive Inheritance of M orbid Obesity Associated with Melanocortin 4 Receptor Deficiency. J. Clin. Invest. 2000, 106, 271-279.
(40) Sina, M.; Hinney, A.; Ziegler, A.; Neupert, T.; Mayer, H.; Siegfried, W.; Blum, W. F.; Remschmidt, H.; Hebebrand, J. Phenotypes in Three Pedigrees with Autosomal Dominant Obesity Caused by Haploinsufficiency Mutations in the Mel-anocortin-4 Receptor Gene. Am. J. Hum. Genet. 1999, 65, 15011507.
(41) Hinney, A.; Schmidt, A.; Nottebom, K.; Heibult, O.; Becker, I.; Ziegler, A.; Gerber, G.; Sina, M.; Gorg, T.; Mayer, H.; Siegfried, W.; Fichter, M.; Remschmidt, H.; Hebebrand, J. Several Mutations in the Melanocortin-4 Receptor Gene Including a Nonsense and a Frameshift Mutation Associated with Dominantly Inherited Obesity in Humans. J. Clin. Endocrinol. Metab. 1999, 84, 1483-1486.
(42) Gantz, I.; Shimoto, Y.; Konda, Y.; Miwa, H.; Dickinson, C. J .; Yamada, T. M olecular Cloning, Expression, and Characterization of a Fifth Melanocortin Receptor. Biochem. Biophys. Res. Commun. 1994, 200, 1214-1220.
(43) Kazmierski, W.; Hruby, V. J. A New Approach to Receptor Ligand Design: Synthesis and Conformation of a New Class of Potent and Highly Selective Opioid Antagonists Utilizing Tetrahydroisoouinoline Carroxylic Acid. Tetrahedron 1988, 14, 697710.
(44) Kazmierski, W. M.; Yamamura, H. I.; Hruby, V. J. Topographic Design of Peptide Neurotransmitters and Hormones on Stable Backbone Templates: Relation of Conformation and Dynamics to Bioactivity. J. Am. Chem. Soc. 1991, 113, 2275-2283.
(45) Cowley, M. A.; Smart, J. L.; Rubinstein, M.; Cerdan, M. G.; Diano, S.; Horvath, T. L.; Cone, R. D.; Low, M. J. Leptin Activates Anorexigenic POMC Neurons through a Neural Network in the Arcuate Nucleus. Nature 2001, 411, 480-484.
(46) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Color Test for Detection of Free Terminal Amino Groups in the SolidPhase Synthesis of Peptides. Anal. Biochem. 1970, 34, 595-598.
(47) Chen, W.; Shields, T. S.; Stork, P. J. S.; Cone, R. D. A Colorimetric Assay for Measuring Activation of Gs- and GqCoupled Signaling Pathways. Anal. Biochem. 1995, 226, 349354.
(48) Haskell-Luevano, C.; Cone, R. D.; Monck, E. K.; Wan, Y.-P. Structure Activity Studies of the M elanocortin-4 Receptor by in Vitro Mutagenesis: Identification of Agouti-Related Protein (AGRP), Melanocortin Agonist and Synthetic Peptide Antagonist Interaction Determinants. Biochemistry 2001, 40, 6164-6179.
(49) Schild, H. O. pA, a New Scale for the Measurement of Drug Antagonism. Br. J. Pharmacol. 1947, 2, 189-206.

J M 0104872

[^0]: * To whom correspondence should be addressed. Phone: (352) 8462722. Fax: 352-392-8182. E-mail: Carrie@cop.ufl.edu.

[^1]:
 $K_{i}=-\log \mathrm{pA}_{2}$.

